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l. _Introduction ~
N The development of high degree spherical harmonic fields has been carried s
out for a number of years. The estimation of such fields has become more
j viable due to the availability of satellite altimeter data in the ocean asreas, and .
i the increased availability of terrestrial gravity measurements. One of the first ::
) solutions to degree 180 was that of Rapp (1978). In 1981 Rapp carried out a -
:. gsecond expansion to degree 180 using a more complete set of a priori potential ’
. coefficients than used in the 1978 solution. Other solutions have been

. developed by Lerch et al (1981, GEM10C) and Wenzel (1985, GPM2).

. In the past few years our studies have been related to improved modeling
- techniques taking into account approximations made earlier (Rapp,, 1984; Cruz,
- 1985) and in the improvement of our 1°x1° mean anomalies in land and ocean
areas (Rapp, 19f6a). The progress in these areas has led us to the
" developmen! of new high degree expansions that take advantage of the new 3

[

theory nrnd new data. This report describes the data, methods, and analysis
used 1n the development of the new solutions.

DN
’.'.lﬂl_
'

L]
.

2. Data to be Used i
£ We first desceribe cach of the possible sources of data for use in the new -
: golutiong. =
<
X -
“

. 2.1 1°x1® Terroetrinl Gravity Data

. We hove roecent’'y completed an update of our 1°x1° mean free air anomaly :
. data get (Despornabes, 1986),  This data set has evolved from prior compilations ~ A
:: and from a merzyer with data made available from DMA Aerospace Center. The
. new data =et contains 48,955 1°x1° anomalies (Figure 1) and 5689 anomalies )
- estimnted by reophysical correlation techniques. The location of most of the

. grophvsical annomalies is shown in Figure 5. This new data set has corrected
< a number of e-rors found in the set used for the 0OSU81 solution and has -
5 incorporated o number of new date sources. The new data has led lo better r
annmaiy est.matos for much of Europe, all of Austiralia, parts of Greenland, r
Soutk Africs. "'nd ~. Japan, Brazil, and other areas. <

£

2.2 Altimeter Derived 1°x1° Gravity Anomalies

. -~
3

A combined Geos-3/Seasal allimeter data set has been used to derive
. gravity anomalies nn a (%125 grid in the ocean areas. This gridded data has
been used tn rhtain 30°x20° and 1°x1°* mean free air anomalies (Rapp, 1986a).
Approximate'y 27,000 vnlhiers were estimated although some values were on land
and some values were not reliable because of the sparsity of altimeter data in
the area. The location of all anomalies i8 shown in Figure 2. In later use we

will Aelete from thia dntz set anomalies on land and values with large standard
- deviatinne.,
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?'_i 2. Use a terrestrial anomaly in ocean areas only if its standard deviation is
:_.j £ 5 mguls or if no altimeter derived anomaly exists.
'1 ",
S 3. Do not use altimeter derived anomalies south of latitude -65°.
':‘ 4. For accepted terrestrial data apply the following corrections:
Kot A. Due to Mass of Atmosphere (see equation (3.43))
:3-' B. To Reduce Surface Anomaly to the Ellipsoid (see equation (3.30))
-:' C. For Gravity Formula Change
5. Reduce altimeter derived anomalies to the ellipsoid from the geoid using a
gradient technique (see (3.30)).
'.:__. 6. Do not use altimeter derived anomalies in the Mediterranean area defined
"N as (30° ¢ ¢ € 50°; 0° € )\ s 40°).
aa 7. Create two data sets where one excludes geophysical anomalies and the
L other includes such anomalies. Preliminary tests indicated that 33 geophysical
S5 anomalies were very reasonable values and they were therefore included in
_': the first data file. The location of these anomalies and the rational for their
_'\‘...-: selection will be discussed later. We wil. be making two main combination
) solutions; one will be designated OSUB86C and it will exclude geophysical
e anomalies (except for the select 33 wvalues); the other will include the
:::v.: geophysical anomalies and will be designated OSUS86D.
R
!-“J
‘:_\"_ The location of the 50,562 1°x1° anomalies used for the OSUS86C solution is
_\.. shown in Figure 3 while Figure 4 shows the location of the 56,109 values used
in the OSUB6D solution. Figure 5 shows the location of 5,547 1°x1° anomalies
- used in OSU86D but not in OSU86C. Figure 6 shows the location of the 32,274
o anomalies derived from the altimeter data that are used in both the C and D
::;-' solutions.
:::: In order to form a global field, values have to be estimated for blocks in
which ro ancmaly estimate is available. Setting such values to zero is
g inconsistent with knowledge of the gravity field that we do have from the a
::-. priori potential coefficient estimates. We therefore calculated a rigorous
:.-_ anomaly on the ellipsoid using the potential coefficients described in Section
e 2.3.
)
0,
" The end product of this merger is two sets of 64,800 1°x1* anomalies that
S refer to an ellipsoid whose parameters were defined earlier and such that
N there is no atmosphere outside the ellipsoid. Each anomaly has been assigned
T a standard deviation which comes from the original estimation process. In the

case of the anomaly "fill ins” we assigned a standard deviation of 225 mgal.
It is our intention to assume that all the anomaly estimates are independent.

This is not the case and problems caused by our assumption will be discussed
A later.

We give in Table 1 information on the two 1°x1° anomaly fields to be used
in our combination solution.
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N As normal figure of the earth a geocentric, rotating, equipotential
-\‘; ellipsoid, the gravitly field of which can be defined by four parameters, is .
A formally used. The parameters can be the equatorial radius a, the flattening :
~. f, the enclosed mass M which is equal to the earth’s mass, and the rotational X
»"s" velocity o which is equal to the earth’s rotational speed. The normal gravity

potential generated by this ellipsoid can be expressed in terms of even-degree
N zonal harmonics as:

U(r, ¢, A) = M[1 + 3 f),,, of’,n(sini)] + -l-u‘r'cos’; (3.5)

-:_: r n=2 ' 2
where
-. [-),,,'o fully norualized normal potential coefficients 2
\';' i’,n fully normalized Legendre polynomials of degree 2n.
1N
.E The bg,o are related to the conventional Jp coefficients as follows:
A

De,o = ——A— (3.6)
< V2 + 1

:_}f In practice the Jj3 are negligible for ¢ > 6. From Cook 1959) we can compute:

' 20 -l lafi o2, 1

o ne2ra-30-2alt- 21+ 2 1] (3.7)
K-

W _ -4 1 1 2

% o= 5t - dn[re(y - 3e) - a1 - ] (3.8)

4
Je = 57 f2(6f - 5m) (3.9)

. 21

- with :
2o3(1- K
5 o= ¢ amgl f) (3.10) .
.’.l. -

The disturbing potential is defined as:

N
-7 T=W-U (3.11)

;:.'
- Using (3.2) and (3.5) this becomes:

) . - 2 1 I R N
T(r, &, v = M7 1 [9] Cat Yg2(#, A) (3.12) :
\'.; r £=2 m=o o=o0'l
i~ B B
':_:- where the fully normalized disturbing potential coefficients Cy% are the same b
\:: as the Ajp% except in the case of the even degree zonals for which the Dy, -
& are subtracted from the Ag,. In Lhe usual notation:
[~ - Ci a =20

. o - vems
:: Cean { Stmy, o =1 } (3.13)
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_ (1.1 2%  e‘r‘sin?2¢ _a? (1 . e*r’sin?2é) 3T
b =l TN T ST T T abM Jr-% 2+ abs ar (3-17)
where
M meridional radius of curvature of the ellipsoid
N pr  : vertical radius of curvature of the ellipsoid

b polar radius of the ellipsoid

Retaining only terms of O(e?) the boundary conditions (3.16) and (3.17)
become (Cruz, 1986, (2.7), (3.10)):

8T 2 0 2ging s T 2 in3é — T )
Ag = - 37 - T T - e?sinécos¢ Ty + e?(3sin?¢ - 2) r (3.18)
sgm = - 3 - 217+ e3(3sin?b - 2) I (3.19)

If terms of O(e?) are further neglected the boundary condition transforms to
the usual spherical form:

2g° = Ag§ = - o - %

ar T (3.20)

where the superscript o denotes the spherical approximation gravity
anomaly.

3.3 The Gravity Anomaly in Terms of Potential Coefficients

In our further discussions we concentrate on the use of the gravily
anomaly Ag defined in (3.14) and the boundary condition (3.18), as opposed to
the Agy of (3.15) and (3.19).

We first wish to express the gravity anomaly Ag of (3.14) in terms of the
disturbing potential coefficients Cp% occurring in (3.12). This is conceptually
done by substituting (3.12) into (3.18). The result is formulated in Cruz
(1986) in terms of ellipsoidal corrections:

- 2 1 2 } )
& 1)[: - CtaYaz(e, ) (3.21)

8g = 3 I T I (e

=2 m=0 o=o
i

where the é?; {i = h, y) are ellipsoidal corrections of O(e2?) computed from
the C4% themselves as follows: i

“ol, )
cql
with

if

~O : . ~ol .
e’ (PlmutmCl-2,m * 927CLE + T2 VECl+2, )i 1 = h, 7

13
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Y 483 = 3 I I I (#-1)Ced Veile, N) (3.28)
a% £=2 m=o g=o
with inverse
Rt Ceg = E‘M_l_ Zl [] seg vazs, 1) do (3.29
o n
-{:f:" -8—2(l~l) g
hdw
» We s8till need to relate the AgJ needed in (3.29) to the gravity anomaly that is
more directly available in practice, namely, the gravity anomaly 4ag., that
j_.‘:" follows the definition (3.14) and refers to the topographic surface of the
j.::« earth.
ol
';:._‘_: To relate Ag, and 4g9 Cruz (1985) has suggested that Ag_. be downward
continued to the ellipsoid as a first step. To do this we utilize a Taylor
series expansion:
e
N - _dag . 1 adag o,
i e = 88, ~ 37 h 57 373 h? ... (3.30)
\-‘- . 3 . .
N where h is the height of the point (or mean elevation of a block) above the
ellipsoid. In writing (3.30) we recognize the concern with analytical
S continuation and the problem of computing the gradient expressions. Although
;"-J local gradients can be computed from detailed data, we need gradients for the
,_ reduction of mean anomalies on a global basis. The most efficient way to do
P this is to differentiate the anomaly expression (3.21) assuming potential
S coefficients are known. Neglecting the small effects of Cy%h and Cp%7 in
these reductions we have:
:_ dag . KM E )% i (,_1)(3+2)[§]lé o yeale ) (3.3
"‘ ir r? 222 m%0 a-o r tm Tim'®, T
N .ﬂg:.k_h! E f )l: (‘_1)(2+2)(3+3)[.§]‘éd'yot(; A) 3.3
" ar2 re p=, m=0 o=o0 r ‘m b ’ / v3.90
R
AN The root mean square value of the first derivative reduction in (3.30) is 10
,'::":' mgal (max = 19 mgals) and for the second derivative reduction it is $0.01 mgal
-:,:' (max = 1.0 mgal) (Rapp, 1984). These computations were carried out with the
Rapp (1981) potential coefficient field to degree 180. From recent calculations
using 1°x1° mean gradient computation and an unpublished expansion to
3 degree 300, the RMS value of Lthe first derivative effect is t0.8 mgal (max = 30
mgale) and for the second derivative it is 20.04 mgal (max = 2.1 mgals). In
practice we compute the gradient correction terms and store them for
T application to various sets of surface gravity anomalies.
,:-f.':'- Knowing the gravity anomaly Ags; on the ellipsoid we can express the
S spherical approximation gravity anomaly AgJ on the equatorial sphere us (Cruz,
o 1986, (4.8)):
S
o BB = BEg * th ey By b oag tay L. 13.33)
S
;;}.3:: 15
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and
- — 4 :
Cpeh? = §TT%TT [(2-5)(£-2) (8-1)Kg-s, nWamCE' ¢, m
+ (4-3) () (2+1)Le—; utnC2’2,m

+ (2-1)(2+2) (£+3)M,CT2°

¢ (841) (4+4) (#+5)Ngy s, mVanC2t3 , m
+ (£+3) (446) (1+T)Pgrs, mX2aClte , m] (3.39)
with
Ktm = ctmolt+2,m
Lem = dtm(Bim + Bl+2,m)
Mim = o2mYl+2,m * PlA * d2—2 mYim .3.40°
Ntm = 7em(Bl-2,m * Bim)
Ptn = 72-2 a7 tm
wan = (£-m+])(8-m+2)
m (28+1)(22+3)
pro - Bzt

tem) (2+m-1
Yhm (TR 1) (28-1)

v (20-7) (8+m—3) (4+m-2) (8+m+ 1) (2+m)
b = o) (fm3) (tm2)(t-n-1)(f-m)

- (2448)(4-m+1) (4-m+2) (4-m+3) (#-m+4)
Xtm = (22+1) (2+m+1) (8+m+2) (£+m+3) (£+m+4)

This completes the discussion on how to express the disturbing potential
coefficients Cy% in terms of the surface gravilty anomaly. The two steps
involved are (3.30) followed by an implementation of (3.34) via (3.35) or (3.36).
the formula for the Cy%:? in terms of Cy%° is given in Cruz (1986, (6.20)).

3.5 Physical Realizalion of the Gravity Anomaiy

A final point should be made concerning the physical realization of the
theoretical gravity anomaly defined in (3.14). Rapp (1984) discusses the

17
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‘.\‘
";: The mathematical model is written as
4 L

A F = F(Lg®, Lea) = O 4.

" which is linearized to yield the observation equation:

a.:"\ . BeVg + BV, + W =10 (4.2)
"-"\ where
-4 aF aF
f T e— =

Bs g B, aL, (4.3)
N . . . .
" : If we designate Pp; and P, as the weight matrices for the observations and
j.';*. parameters respectively, the weighted least squares condition for the solution
N.»" is:
)
1. »
VpTPeVy + VIP V., = a minimum 14.4)
ey
:.:':' The solution for V, is:
%
E‘ Vo, = -(BIM'B, + P )BIM W '4.5)
N
where

. M = BpPg'Rg? 4.6
':ﬁﬁ The observation residuals are:

g

o Ve = ~PE'Bp ™M 1 (B,V, + W) (4.7
:}, The error variance-covariance matrix for the solution vector is:
[ £, = m3(BIM 1B, + P)"! 4.8

w3 where m is the variance of unit weight.
AN
&_-{ The mathematical structure is formed by assuming that the potential
) coefficient estimate from satellite derived procedures should be the same as
R that obtained from the global gravity data set after appropriate corrections
K \.:; (e.g. ellipticity and downward continuations) have been made. We write:

'-‘:V

o F = Le,a - L,g =0 3.9
::::; If L o is the approximate potential coefficient set and L,c° is the coefficient
-_;'-: set based on the observed (and corrected) anomalies, the misclosure vector is:
.P".'

> Ws Lo - Ly (4.10)
)

::'j The L,g values are computed from (see eq. 3.34)

J‘_'

oo

~ Cogtro - —1 — ” Age V2206, N) do (a.11\
e Amy(L-1)

e

o 19

o
L.
'\-"

f,’.'

N vt avaN e et e
; ;.: rfJ-.-_n‘.’ ) ,1‘ e “\.‘._\ql ‘. 1.‘!\\‘{ . _'-\.,- '\“ J- h (\LJ\-\. h\' .'.'.3"‘,'\ O _'\,".'_‘-\\ RS o

5
/ (1L « *



The corresponding adjusted potential coefficients, considering the ellipsoidal
corrections, would be:

Ctm,a = Lya + 6Co%1° + Cplr? 4.21
The adjusted anomalies would be found from:
Lga = Lp° + Vy (4.22}

The corresponding surface anomalies would be found from (4.13)

2
gs = Lo - bga %%3 h + %7 %;%g h? 4,23

This completes the discussion of the adjustment model to be used in this
combination solution. It is similar to the procedure used in the computation of
the OSU78 combination solution except now we reduce surface anomalies to the
ellipsoid and apply ellipsoidal corrections.

The normal equation matrix of the solution is given by BpP3!B;'. The size
of the matrix is dependent on the number of a priori defined potential
coefficients. For a solution complete to degree 20 the number of coefficients
is 441. In the 1978 solutions we were able to complete a solution to t = 12.
In our 1981 solution we wanted to go to a much higher degree with more
coefficients. This could not be done because of computer limitations so we
made certain assumptions that led to the normal equation matrix being
diagonal. The result was an approximate combination solution that was carried
out with small computer demands.

For the solution to be described in this report we have 64800 1°x1°
"observations'" and 582 unknowns. The estimated computer time for a solution
on the IBM 4031D at OSU was 4.5 hours. As several solutions were
contemplated the OSU computer requirements were still considered excessive.
At this point we started tests on a CRAY XMPZ2/4 supercomputer at Boeing
Computer Services. Funding for this computer work was from National Science
Foundation Grant EAR-8420862. Modification of our existing combination
program by one of us (JC) took advantage of the vectorization ability of the
CRAY machine. With this change, a combination solution took 6.5 minutes.
This meant that a number of different solutions could be carried out to learn
what the best solutions could be.

5. The Estimation of the High Degree Potential Coefficients

The adjustment described in the previous section yields a set of adjusted
potential coefficients (see eq 4.20) and a set of adjusted anomalies on the
ellipsoid (see eq. 4.22). These anomalies can then be used to estimate Cy%°
using the following (see eq. 3.34)

o~
(@]
—

. 1 l -
e’ = ” Age Y2(¢, \) do
;;(l*l) g
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where N = 180°/8°. The evaluation of (5.2) using pre-computed associated
) Legendre function integrals, and a Fourier analysis of the mean anomalies
along latitude bands, and with the qp values defined in (5.5) is carried out
through the HARMIN subroutine in Colombo (ibid) as implemented in OSU (RHR)
library program F419. This procedure is one of the ways in which the high
degree expansions have been computed from the adjusted anomalies.

5.2 Potential Coefficients Through Optimal Estimation

A disadvantage of the procedure in the previous section is that it does
My not take into account data noise nor does it provide error estimates of the
b estimated coefficients. To consider this factors we have used the optimal
N estimation procedure developed by Colombo (1981) and implemented for 1°xI°
data by Hajela (1984). We discuss only the general principles of this least

3 squares collocation solution to (5.1). We start with the global mean gravity
N anomaly vector, Ag, expressed as the sum of a signal vector, z, and a noise

N vector, n:

Ag = 2z +n (5.6)

: Let the potential coefficient vector [Cp%:°] be defined as ¢. Let F be a
. linear operator that will estimate c (i.e. &) from Ag:

,
S
(o

- F(z + n) (5.7

The error in this estimation is e:

fold

= ¢ - Flz+n)=1{(c - Fz) - (Fn) ‘ ‘5.8

A e = ¢ -

I We define the sampling error as e, and the propagated noise error to be e,.
We have:

h

[¢]]

e, = ¢ - Fz ¢, = Fn

A The error covariance matrix of & is:

Ey = Eg + E, = Mle, gl} + M{e, gr!n} 5. 10:

where M is an averaging operator. Substituting (5.9) into {5.10) we find:

- E; = C -2C.,F' + F(C,, + D)F' (5.11

where
- C =M{ccl), Cg, =Mz}
p Sar
s sz = M(Z _Z_'}, D = M{n nf}
4

C represents the covariance matrix of the potential coefficients; C., is the
cross covariance between the potential coefficients and the given mean
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The error variance of the potential coefficients is the same for C' and ce.
WY It is given by:

1 s AN? ifm=20
7*(1-1)* (24+1 = l-cosma)
mZ

a e e e
POl B )

0itm = 03tm
ifm=0

RISl

L o
z

N T keh xeh (5.18)

: where cg are the anomaly degree variances implied by an a priori potential
"’-:' coefficient model.

The calculation of the covariance functions and the potential coefficient
errors of the optimum estimation solution requires the definition of cjg.
Adopted here was a model used by Colombo (ibid) which consists of the
anomaly degree variances implied by the 0OSU78 solution from degree 2 to 100
and beyond 100 by a two component anomaly degree variance model described
by Rapp (1979). Specifically this model (with the cjg values interpreted to be
at a sphere of radius R (= 6371 km) is:

ca(R) = (2-1) [;%j (s,)8+2 + ;2 7%5 (s,)‘+=] mgals 5. 19

where

o, = 3.4050, «, = 140.03
s, = 0.998006 s, = 0.914232
A=1, B=2

For actual implementation we require the cg values on a sphere of radius
a so we used:

2y 8+2
cala) = cg(R)[g;] (5.20"

A plot of this function will be given in a later seclion dealing with results.

Our intention in this study will be to implement both the HARMIN type
solution and the optimal estimation solution. Various solutions will be made
and the results compared.

6. Preliminary Investigations

Before we discuss our final solutions it is appropriate to describe a set of
studies that led to the procedures used in the final solution. These studies
were carried out with preliminary sets of global gravity models and a priori
potential coefficient gets.
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B. Cumulatively:

6N =

s

Nmax %
[ 6N,2] N
-2
(2) The root mean square anomaly difference by degree and for the whole
coefficient set:
A. By degree
2 1 -2 %
sge = [yice 12§ 1 acia] 6.3
m-0 o-o0
B. Cumulatively:
Nmax %
[ 6gp’] 6.1
-2
(3) The percentage difference by degree and cumulatively:

A. By degree:

B
~
"

100 6.5

B. Average Percentage Difference

Nfaxp

r4

Y 5 S Lo

P 6.6
Nmax'l

The values of 6N and of 6g represent the glcbal mean difference of the
two potential coefficient functions over the sphere. The values of 6N§ and
6gg represent the same information by degree. The percentage difference
provides information that takes into account the relative magnitude of the
coefficient differences to the coefficient magnitudes.

Another quantity that can be used for the comparisons of two coefficient

sets is the degree correlation coefficients (pp) and the overall correlation
coefficient p. The degree correlation between the coefficient sets 1 and

would be:

EQKC‘M'Clmi + s‘m‘slml)

pL = T T (6.7)
R % , %
(£ tcin*]*[1 1cin]
m=0 o=o L m=0 a=o b}
The overall correlation would be:
N N N .
$°° L (Com Ctm, * Stm,Stm )
p = N :% L:{"z - ‘Z'l N T ‘lL )4 (6.8
x ~2, x i I 4
femr e ] o1 i
2-2 mz0 a=o t 222 m=0 g=o J
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variances implied by a uniform uncorrelated error of t10 mgals in 1°x1°
blocks. From Rapp (198!), we have that the propagated standard deviation of
a fully normalized potential coefficient of degree £ due to a uniform,
uncorrelated error of m(4g) in a block size of 8 (radians) can be approximated
as:

m(é' s) = __"LLA_ELB_ (6'9)
2y(4-1)V

The 10 mgals used for m(Ag) in (6.9) is the root mean square (RMS) of the
8-15 mgal standard deviations used in the combination solution. The similarity
between columns (3) and (5) is evident.

To examine whether Lhe assumption of 8-15 mgal uncorrelated errors was
reasonable we computed a set of potential coefficients from only the
unad justed 1°x1* anomalies. These values were then differenced from the
unad justed GEML2  coefficients. The difference anomaly degree variances
were then computed and shown in Table 5, column (2). It is seen that the
data errors shown in columns (1) and (3) cannot account for the differences
shown in column (2). This implies that the 8-15 mgal uncorrelated noise
assumption is very optimistic.

We decided to examine the use of an RMS standard deviation of t25 mgals
for the 1°x1° anomalies. The assumption of uniform uncorrelated errors leads
to error anomaly degree variances that are shown in Table 5, column (4).
These variances are now (25/10)? = 6.25 times larger than those of the 10
mgal accuracy, and appear to be much more reasonable. The 225 mgal RMS
accuracy could be implemented in our combination solution by multiplying the
8-15 mgal accuracies by 2.5 then restricting the range to 20 ¢ m & 38 mgals.
We then performed a combination solution denoted by CS(20, 38), yielding
error anomaly degree variances for the adjusted coefficients as shown in
Table 5, column (6). These values are now larger, with cumulative variance to
degree 20 of 1.88 mgal? compared with 0.48 mgal? from column (5).

[t i8 of interest to compare the coefficients of the CS(8, 15) and CS(20, 38)
solutions in terms of undulation and anomaly differences and percentage
differences. Using the equations of section 6.2 the difference between the two
solutions are shown in Table 6. As would be expected the greatest change
takes place at the lower degrees because it is here that the dual estimate of
the potential coefficients are obtained from the adjustment of satellite and
terrestrial data.

The CS(8, 15) and CS(20, 38) types of solution were also compared in
terms of orbit fits and fits to Doppler derived undulations. The orbit fit
results are shown in Table 7, with more specific details of orbit tests given in
Section 8.5. [t ia seen that the CS(20, 38) solution performs substantially
better than the CS(8, 15). This seems natural as the higher anomaly standard
deviations gives the a priori potential coefficients greater influence on the
solution.
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Eﬁ\ Table 8. Comparison of Doppler Derived Undulations with Preliminary 3
i Geopotential Models Complete to Degree 180. )
L Mean Std Dev. Number of .
-y Model Difference Difference Stations Area :
L Cs(8,15) 0.32 m t].64 m 1749 Global?

CS(20,38) 0.19 1.68 1738
L csS(8, 15) 0.38 1.55 691 N. America! -
SN CS (20, 38) 0.21 1.54 687 X
. .
- CS(8,15) -0.24 1.42 172 Europe?

Cs(20, 38) -0.48 1.38 172
;i cs(8, 15)* -1.13 1.60 114 Australia? 1

Ny CS(20, 38) -1.06 1.69 114 y
=

L ! stations with residuals greater than 4 meters in absolute wvalue were

rejected \

:'{: 2 A fixed set of stations was used
:::'.: > The combination solution used an anomaly standard deviation range of

- 8 £ m é 15 mgals over the land of Australia only, with 20 € m € 38 mgals

used over the rest of the world.

:'.E: difference standard deviation of t1.60 m at 114 Australian Doppler stations ;
,\ with our final solution to be discussed later, compared with t1.69 when the )

= CS(20, 38) solution was used.

The problems discussed in this section arise from the assumption of

- uncorrelated noise. In fact the anomaly errors are correlated. Such
7 correlation and its role in the computation of anomaly degrece variance
-~ accuracies is discussed by Weber and Wenzel (1982). At this point we have no
™ way of treating anomaly error correlation in our solutions. Instead we have

increased our anomaly error estimates. Such a procedure is not desirable and :

o in fact gives unreasonably high errors at degrees above 30. To compensate ‘
- for this, our accuracy estimate for unadjusted coefficients will be based on .
p the t10 mgal uncorrelated noise assumption.

6.4 Preliminary High Degree Expansions
f We next studied the manner by which the high degree expansions from the
- adjusted anomalies of the combination solution should be carried out. The

main comparisons to be discussed here relate to a HARMIN type solution (see
equation 5.2) and the optimal estimation solution (see equation 5.15). The first
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v implied by the OE(8, 15) and OEl test solutions as well as the a priori model
used in the optimal estimation procedure. The smoothing effect of the anomaly
noise is evident from this plot.

The optimal estimation procedure yielded error estimates for the computed
coefficients. For the OE(8, 15) solution these estimates were directly taken,
giving error anomaly degree variances as also plotted in Figure 7. For the
OEl solution the error estimates from the optimal estimation mainly correspond
only to the sampling error, with a small contribution from the 1 mgal noise.
To complete these estimates we quadratically added the propagated error
implied by the assumption of 210 mgal uniform, uncorrelated 1°x!* noise.
Specifically, we computed:

m(C, S) = V m?(SE) + m2(PE) 6,11

where m(SE) is the sampling error and m(PE) is the propagated error. The
m(PE) is given by (6.9). A similar, but not as rigorous procedure was used in
the development of the 0OSU81 field. The total error estimate for the OF]I
solution gave error anomaly degree variances that are also shown in Figure 7.

The error estimates for the OE(8, 15) solution are smaller than the total
error estimates of the OE1l solution. This is consistent with the concept of
filtering the anomaly errors in the OE(8, 15) solution. However, this filtering
involved a smoothing of the spectrum which could substantially affect valid
information. In order to lest the two solutions we compared then in terms of
their fits to Doppler derived undulations as shown in Table 10. The O0F]
solution performed slightly better in these comparisons. At this point we
decided to use for our work the OEl type of solution, with a simple
propagation of the anomaly errors as shown in (6.11).

Since the optimal estimation solution i8 a complicated process it is of
interest to compare the results of HARMIN with OEl. These comparisons are
shown in Table 11. The conclusion from Table 11 is that HARMIN gives
coefficients that agree well with the coefficients found from the optimal
estimation. The disadvantage of the HARMIN solution is that no error
estimates are provided. Such values are found when the optimal solution is
carried out.
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Table 10. Comparison of OE(8, 15} and OEl in Terms of Fits to
Derived Undulations. Maximum Degree is 180.
Mean Std Dev. Number of
Model Difference Difference Stationst Area
0QE(8,15) 0.22 m t].68 m 1731 Global
OE1l 0.19 1.68 1738
OE(8, 15) 0.25 1.56 683 N. America
OE1 0.21 1.54 687
+ Stations with residuals greater than 4 meters in absolute value were
rejected
Table 11. Comparison of Potential Coefficient Solutions From HARMIN and from

Optimal! Estimation (1 mgal standard error).

2 6N {(cm) 6g (mgals) P(X)
2 0.0 0.00 0.0
10 0.0 0.00 0.0
20 0.0 0.00 0.0
30 0.2 0.01 0.5
50 0.2 0.02 1.1
75 0.8 0.09 6.2
100 1.0 0.15 10.6
120 1.0 0.18 13.2
150 0.6 0.14 13.0
180 0.8 0.22 22.3
to 180 8.9 1.53 7.6

6.5 A Study of the Undulation Residual Correlation with Elevation

Tscherning (1985, private communication) pointed out that the differences
in the Doppler and gravity model undulations were correlated with elevation
for the 0SU81 solution but not for the GPM2 field. In our research we have
computed this correlation for several models for various Doppler data sets by
assuming there was a linear correlation with elevation. To do this the
available Doppler stations were grouped into 100-meter elevation intervals,
The undulation residuals AN lling within an interval were then averaged to
get AN. The mean value AN was assumed to refer to the mean elevation H of
the stations involved. A simple least squares fit was then carried out to

compute the slope s and bias b in the observation equation:
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Table 12. Undulation Residual Correlation with Elevation Using the Global
Station Set. Maximum Degree is 180.

Slope Std. Dev. Number of
Solution (m/km) (m/km) Stationst
osugl 0.73 20.16 1721
GPM2 0.00 0.10 1735
CS(20. 38, OEl) 0.39 0.13 1738
GPM2(n = 7 to 14)
+ CS(20, 38, OEDl) 0.02 0.13 1734
cs(8, 15, OEl) .42 0.13 1719
—J

t stations with residuals greater than 4 meters 1n absolute vialue wers
rejected

The slopes of our new solutions are less than 1n OSU81 (~0.1 m/kmnm
compared to ~0.7 m/km), although they mayv still be considered signficant.
Further tests are needed to better understand the apparent sicpe problogs and
its implications

Table 13. Undulation Residual Correlation with Elevation 1 sing  the nobal
Station Set. Maximum Degree 1s 30

] Slope Std. Dev. Numbier of

Solution m. km' m. km . Stationst
—
OSV'8] 0.93 10.18 [ENEN |
GPM2 0.24 0.17 7on
|
GEMLZ 0.57 0.21 [ESANY. {
!
GRIM3IL1 0.79 0.19 16972 i
CS(20, 38, OEl: 0.74 0.17 1731 !
—

t Stations with residuals greater than 5 meters 1n absolute value were
rejected.
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i In addition we found, again through Doppler undulation comparisons, some
. geophysical anomalies to be quite realistic in the sense that they yield
" improved undulation values at selected sites. Because of this we selected (see
Section 6.6) 33 geophysical anomalies to be included in the data set for which

.:-:., almost all geophysical anomalies were excluded. The formation of this global
}:-j data set was discussed in Section 2.4.

P Tests with these fields indicated that our Doppler undulation comparisons
b in Australia were not as good as found in other areas, primarily North America
. and Europe. In order to obtain a better Doppler fit in the Australia region
e - we gave the terrestrial anomaly data higher weight by specifying in this
g - region the anomaly standard deviation range to be 8 to 15 mgals instead of
the 20 to 38 mgal used everywhere else (see Section 6.3). [In addition we

changed five anomalies from one data source to another source on the basis of
individual Doppler undulation comparisons. This led to undulation differences
decreasing from 21.69 m to 21.60 m. More details of undulation comparisons
are given in Section 8.

With the above as background we carried out the two main solutions of
this report, 0OSU86C and OSU86EN. The C solution essentially excludes
-~ geophysical ancomalies while the D solution includes them. The combination
= solutions were performed on a CRAY XMP 2/4 machine using the procedures
e outlined in our previous sections. The ellipsoidal corrections were applied to
» the adjusted coefficients (see eq. 4.21) to obtain our final "adjusted”
'_'_l coefficients. The ndjusted anomalies were developed into potential coefficients
RN using ‘he optimal estimation procedure with a uniform anomaly noigse of t1
e mgal and the a priori anomaly degree variance model defined by equations 5.19
and 5.20. The expansion was carried out to degree 250 which involves the
determination of 63,001 coefficients. The coefficients were merged with the
adjusted coefficients (see remark below eq. 5.1), ellipsoiaal corrections
computed from the merger (eqs. 3.37 and 3.39), and these corrections applied
teq. 3.36) to obtain the final high degree coefficient set. Although the
adjusted coefficients and the coefficients computed from the adjusted
~ anomalies should be the same, we gave preference to the directly adjusted
potential coefficients because such coefficients carried a standard deviation
determined through the adjustment.

The standard deviations for the potential coefficients not estimated in the
adjustment were obtained considering the sampling error (SE), found from the
e optimal estimation solution (see eq. 5.18) and a propagated error (PE) implied
- by the assumption of 10 mgal uncorrelated noise for the 1°x1* anomalies.
g This error i1s computed from:

.‘ ¥
' m(PE) - —DLAE8 (7.1
2y 2 l‘«f:
o
ey where A is the block size (1° in radians) and m(4g) is the anomaly standard
S deviation 1n units of y. The coefficient error, for either C or S was then:
- 1
I\'n
v m'C, S) -V mi(SE. + mi(PE) (7.2)
g 41
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8. Comparison of Results

The purpose of this section is to compare the new models between
themselves and with two other high degree models. The models are the OSU8!
(Rapp, 1981) and the GPM2 (Wenzel, 1985) model. The comparisons, carried out
in several different ways are described in the following section.

8.1 Anomaly and Undulation Comparison

The global differences between the various solutions are shown 1n Table
15 for undulations and Table 16 for anomalies. The differences are given for
the maximum degrees of 30 and 180.

Table 15. Potential Coefficient Differences in Terms of Geoid Undulations

(meters)
0sSU86D osu86C GPM2

0SU Dec81

to t = 30 t 1.04 t 1.32 t 1,12

to £ = 180 1.20 1.51 1.31
GPM2

to ¢ = 30 t 1.08 1.21

to £ = 180 1.25 1.43
0SU86C

to £ = 30 t 0.56

to 4 = 180 0.73

Table 16. Potential Coefficient Differences in Terms of Gravity Anomalies

(mgals)
0osu8eD osu86C GPM2

OSU Nec8l

to 2 = 30 t 2.5 t 3.0 t 2.6

to £ = 180 7.3 8.9 8.4
GPM2

to ¢ = 30 t 2.6 3.0

to £ - 180 8.5 9.9
osu86C

to ¢t = 30 t 1.5

to £ - 180 4.9

47

e 2™ e e e LB R e e e TR T e e e e e e e e e e N R TS O LT I DA N e
) PR A RN E R ) . N 504 . . oW, o N, Ly ‘P., -
c. ."\" » o NSt A » -I. “ \'h "ﬁ ¥ -" L s, “nkY \\ o' a0 )

L)

LIS L. T
ER

Lae M3 260




£ uo paseq w

1 ST 1BAJ233uU]l IN03U0)) ZWJD SNUTK (Y8NSO -

.
Jih
RV
b S
b
Lo
\
' L
K%
ot
0
St ¢
N
N7 >
R k
K Bot
N It )
= ~'Jo -
1 = . =
* w - .m DAY ~1, S K
ol | > S ~7y . S\ e ne 3
Rix) - -4 1iv gt ..v M \ ..‘a - <
= i 4/ ; M 4 /M of U L ) - 1A 314
0. wau’ . [ NG Sy, . ﬁ\ 3 N
r P . s : A 7 < =
S /V. 3 2 > A J.A - i s \ll“ N«e. \“0\ -
1 3 Qs P 0 - Wt N D O O B b P QR D 5 5
LU JT|.\L ey i S St B % Il.u S RECES XA L et i = 5
R - ke
3 - .
388538858 8s 38849y
a0, Ay 2y Ny y oy Y rERe U A SN AP PP
L t-.-\-..; A4 N » LI N < SRR N SN
e FRRNRN. WANEes TARRT:  FRERRRE  YRRRRNR

(PFI3 .2 x 7

dv)y aduai1ajjy( UOTIBINpUN PTO3y 2| aandyy

=
A~
\n

J
{

/-
¢

oy
U.ZA‘}

Y T
[°|° ./J\/

Lot

“

. 3
Y
=7

\J

Ve

)

i,
2
A
1

¥

-
.\"J'

ot

oI

N

2

o
(‘
(n %

L »
... .:. )

o
i

(PR 1 M

'~

TN Mg Mo 1 !

=




(PTad .,z x .z e uo pose
W 1 ST 1PAI33UI 1N03UOD) (YENSO SNUTK 29801S0  del adusasjjyiq uorjeINpU) Eowm. 91 dan3ty

08

e

9

o

RITs

01

51

W06

e
:
3
A
.2
o
3<
~E
iz
C¢
e
Wl
iz




il ElS
By 4, 2,4, 4,
NN YN

LS
2

v
L

a .2 4
:

»
LR

N

‘l‘l ‘l

8.3 Doppler Undulation Comparisons

We next turn to a comparison of the geoid undulations derived (rom the
various geopotential models with undulations derived from Doppler derived
positions. If h is the ellipsoidal height of a station derived through Doppler
satellite positioning techniques, after conversion to a geocentric system
properly scaled (Rapp, 1983), the "Doppler undulation" is:

No - hg - H ‘8.1

where H is the orthometric height of the point. We compute N from Brun's
equation where the disturbing potential is given by equation (3.12) with r the
geocentric distance to the poinl in question projected to the ellipsoid. 1In all
our comparisons we used the parameters to convert the Doppler svstem to a
geocentric system with correct scale derived by Boucher and Altamimi (1985),
The translation and scale parameters to go from the Doppler system to a
geocentric system were used as follows:

Ax 10. 6 cm
dv = 69.7 cm
Az - 490.1 om
As = - 0.604 ppm

The comparisons made were with two primary sets of Doppler stations.
One contained approximately 800 stations and was received from Tscherning.
This set was originally obtained from the National Geodetic Survey and
contains stations only in North America. The second set contained
approximately 2000 stations distributed globally. The coordinates werce
determined in the years from 1971 to 1985. The number of passes could range
from a minimum of 25 to a maximum of 592. In our analysis we made nc
correction for sun spot effects as suggested by Tscherning and Goad (1985},
The overall effect of neglecting this for our large data sets is expected to be
only a few cm. In making our comparison we assumed the geoid undulations
referred to an ellipsoid with equatorial radius of 6378136 m and a flattening of
1/298.257. Comparisons for the Tscherning data set are given in Table 19.
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8.4 Undulation Residual Correlation with Elevation

Tscherning (1985, private communication) pointed out thal the differences
in the Doppler and gravity model undulations were correlated with elevation
for the OSU81 solution but not for the GPM2 field. In our research we have
computed this correlation for several models for various Doppler data sels by
assuming there was a linear correlation with elevation. Results for the global
data set and the stations in Europe are shown in Table 23 and 24.

Table 23. Undulation Residual Correlation Using the Global Station Set

Slope Std Dev. No. of
Solution (m/km) (m/km) Stations
osugl 0.73 t 0.16 1721
GPM2 0.00 0.10 1735
osu86eC 0.41 0.12 1741
OSUB6D 0.43 0.12 1743

Table 24. Undulation Residual Correlation Using the European Station Set

Slope Std Dev. No. of
Solution {m/km) (m/km) Stations
0SUB1 53 t 0.81 172
GPM2 1.87 0.63 172
osu86C 0.92 0.65 172
osugeDd 1.14 0.69 172

From these results we see that the GPM2 model yields residuals with no
elevation correlation for the global data set but significant correlation for the
European stations. Tests described in Section 6.5 indicate that Lhe correlation
in the non-GPMZ2 solution arises from the gravity field information in degrees
7 thru 14. Further tests are needed to better understand the apparent
correlation and its significance.

8.5 Correlation with Topography

UUnder certain assumptions the topography and its isostatic compensation
can be considered to generate a portion of the earth's gravity field. It 1is
appropriate to consider the correlation of the spherical harmonic
representation of the topographic/isostatic potential and of the gravitational
potential represented by various models. Such correlation, by degree, can be
computed from ecuation (6.7). The average correlation for several different
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(._: Table 26. Root Mean Square Residual From Sateilite Orbit Fits Using Selected
X, Geopotential Models

Potential Model

Satellite | Standard¥ 86C 86D GPM2
Starlette t 47 143 179 737 om

Seasat t 0.67 cm/s 1.39 1.46 1.76 cm/s
Oscar t 1.52 cm/s 1.42 1.42 1.62 cm/s
BEC t 75 ¢m 69 176 133 cm
lLageos t 8 cm 8 8 16 cm
Lageos t 7 cm 7 7 17 cm
Geos-2 t 134 cm 85 97 347 cm

*x see text

The standard field used in Table 26 is a specific field that in some cases
is a tailored geopotential model. Specifically the standard models are PGS1331
for Starlette; PGSS4 for Seasat; GEMIOB for Oscar, BEC, and Geos-2; GEMLZ2 for
l.Lageos. The 86C/D and GPM2 models were used in the fits complete to degree
and order 36.

9. Summary and Conclusions

It has been five years since our previous high degree expansion and
combination solution had been carried out. Since then we have seen a number
of developments that warranted the new solutions described in this report.
These developments are in the data area; the theoretical area; and the
computer areas.

In the data area we have recently completed a new set of 1°x1°* mean
terrestirial gravity anomalies. This collection of anomalies has increased from
our prior sct and has improved estimates in a number of areas. In addition a
set of ocean wide 1°x1* anomalies has been derived from the Geos-3/Seasat
altimeter data. The merged terrestrial/altimeter data set provides a more
- complete and more reliable data had than uscd before. And finally, we had
e the GEML.2 potential coefficient set and its revised accuracy estimates Lo use
for our a priori solution.

In the theoretical area, several improvements have been made in the new

solution. First, the boundary condition relating gravity anomalies and the
Al disturbing potential was more precisely formulated to avoid a spherical
DA approximation. Second, correction terms were formulated that enabled the
Ll . . . . . .
e integration over the surface of the ellipsoid as opposed to an integration over
- a spherical surface.
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3. What is the smoothing effect on the potential spectrum from the use of
the optimal estimation (or least squares collocation procedure)?

4. What is the best way to carry out a high degree expansion using
30'x30° mean values and whal differences will be found with the 1° solution
carried out for this study?

5. Sould Doppler derived geoid undulations be incorporated into the
geopotential solution and if so, what parameters should be modeled?

6. What is the best way to balance the needs for a gravity near the
earth’s surface and in space?

7. Should geophysical anomalies be used at all in the solutions or should
their use be restricted to locations where some independent verification is
possible?

8. What is the reason for the residual undulation correlation with
elevation found in most geopotential solutions?

9. What i8 the effect of using the full error variance-covariance matrix of
the a priori potential coefficients.

10. What are the divergence problems for the potential series, and series
representation of other gravimetric quantities, implied by these high degree
spherical harmonic expansions?

Finally we should note that there is a strong need for an improved
satellite potential coefficient set. Although GEML2 is strong at degrees below
6, substantial improvement is needed in the higher degrees. As such fields
become available it will become reasonable to repeat the combination process to
obtain an accurate representation of the earth’s gravitational potential.
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